

How to Think Cloud Native

6 bite-sized thought pieces on the definition and development
of true cloud native capabilities

Joe Beda, CTO and co-founder

How to Think Cloud Native

01. Definitions
There is no hard and fast definition for what Cloud Native means. In fact there are other

overlapping terms and ideologies. At its root, Cloud Native is structuring teams, culture

and technology to utilize automation and architectures to manage complexity and

unlock velocity. Operating in this mode is as much a way to scale the people side of the

equation as much as the infrastructure side.

One important note: you don’t have to run in the cloud to be “Cloud Native”. These

techniques can be applied incrementally as appropriate and should help smooth any

transition to the cloud.

¡

ǶEmpve Pbujwf jt tusvduvsjoh ufbnt. dvmuvsf¡
boe ufdiopmphz up vujmj{f bvupnbujpo boe¡
bsdijufduvsft up nbobhf dpnqmfyjuz boe¡
vompdl wfmpdjuz0Ƿ¡

The real value from Cloud Native goes far beyond the basket of technologies that are

closely associated with it. To really understand where our industry is going, we need to

examine where and how we can make companies, teams and people more successful.

2

How to Think Cloud Native

At this point, these techniques have been proven at technology centric, forward looking

companies that have dedicated large amounts of resources to the effort. Think Google or

Netflix or Facebook. Smaller, more flexible companies are also realizing value here.

However, there are very few examples of this philosophy being applied outside of

technology early adopters. We are still at the beginning of this journey when viewed

across the wider IT world.

With some of the early experiences being proven out and shared, what themes are

emerging?

• More efficient and happier teams. Cloud Native tooling allows for big

problems to be broken down into smaller pieces for more focused and

nimble teams.

• Drudgery is reduced through automating much of the manual work that

causes operations pain and downtime. This takes the form of self healing

and self managing infrastructure. Expect systems to do more.

• More reliable infrastructure and applications. Building automation to

handle expected churn often results in better failure modes for unexpected

events and failures. Example: if it is a single command or button click to

deploy an application for development, testing or production it can be much

easier to automate deployment in a disaster recovery scenario (either

automatically or manually).

• Auditable, Visible and Debuggable. Complex applications can be very

opaque. The tools used for Cloud Native applications, by necessity, usually

provide much more insight into what is happening within an application.

• Deep Security. Many IT systems today have a hard outer shell and a soft

gooey center. Modern systems should be secure and least trust by default.

Cloud Native enables application developers to play an active role in

creating securable applications.

3

How to Think Cloud Native

• More efficient usage of resources. Automated “cloud like” ways of

deploying and managing applications and services opens up opportunities

to apply algorithmic automation. For instance, a cluster

scheduler/orchestrator can automate placement of work on machines vs.

having an ops team manage a similar assignment in a spreadsheet.

02. In Practice
Like any area with active innovation, there is quite a bit of churn in the Cloud Native

world. It isn’t always clear how best to apply the ideas laid out in the previous part. In

addition, any project of significance will be too important and too large for a

from-scratch rewrite. Instead, I encourage you to experiment with these new structures

for newer projects or for new parts of an existing project. As older parts of the system

are improved, take the time to apply new techniques and learnings as appropriate.

Look for ways to break out new features or systems as microservices.

There are no hard and fast rules. Every organization is different and software

development practices must be scaled to the team and project at hand. The map is not

the territory. Some projects are amenable to experimentation while others are critical

enough that they should be approached much more carefully. There are also situations

in the middle where the techniques that were proven out need to be formalized and

tested at scale before being applied to critical systems.

Cloud Native is defined by better tooling and systems. Without this tooling, each new

service in production will have a high operational cost. It is a separate thing that has

to be monitored, tracked, provisioned, etc. That overhead is one of the main reasons

why sizing of microservices should be done in an appropriate way. The benefits in

development team velocity must be weighed against the costs of running more

things in production. Similarly, introducing new technologies and languages, while

exciting, comes with cost and risk that must be weighed carefully.

Automation is the key to reducing the operational costs associated with building and

running new services. Systems like Kubernetes, containers, CI/CD, monitoring, etc all

4

How to Think Cloud Native

have the same overarching goal of making application development and operations

teams more efficient so they can move faster and build more reliable products.

The newest generation of tools and systems are better set up to deliver on the promise

of cloud native over older traditional configuration management tools as they help to

break the problem down so that it can easily be spread across teams. Newer tools

generally empower individual development and ops teams to retain ownership and be

more productive through self service IT.

03. DevOps
It is probably most useful to think of DevOps as a cultural shift whereby developers

must care about how their applications are run in a production environment. In addition,

the operations folks are aware and empowered to know how the application works so

that they can actively play a part in making the application more reliable. Building an

understanding and empathy between these teams is key.

ǶXibu efgjoft bo %TG jt xibu ibqqfot bu¡
32bn uif ofyu npsojoh0Ƿ¡

But this can go further. If we reexamine the way that applications are built and how the

operations team is structured, we can improve and deepen this relationship.

Google does not employ traditional operations teams. Instead, Google defines a new

type of engineer called the “Site Reliability Engineer”. These are highly trained

engineers (that are compensated at the same level as other engineers) that not only

carry a pager but are expected and empowered to play a critical role in pushing

applications to be ever more reliable through automation.

When the pager goes off at 2am, anyone answering that page does the exact same

thingͺ—ͺtry to figure out what is going on so that he/she can go back to bed. What

defines an SRE is what happens at 10am the next morning. Do the operations people

5

How to Think Cloud Native

just complain or do they work with the development team to ensure that a page like

that will never happen again? The SRE and development teams have incentives

aligned around making the product as reliable as possible. That, combined with

blameless post-mortems, can lead to healthy projects that don’t collect technical

debt.

SREs are some of the most highly valued people at Google. In fact, often times

products launch without SREs with the expectation that the development team will run

their product in production. The process of bringing on SREs often involves the

development team proving to the SRE team that the product is ready. It is expected

that the development team will have done all of the leg work, including setting up

monitoring and alerting, alert play books and release processes. The dev team should

be able to show that pages are at a minimum and that most problems have been

automated away.

As the role of the operations becomes much more involved and application specific, it

doesn’t make as much sense for a single team to own the entire operations stack. This

leads to the idea of Operations Specialization. In some ways this is a type of

“anti-devops”. Let’s take it from the bottom up:

• Hardware Ops. This is already clearly separable. In fact, it is easy to see

cloud IaaS as “Hardware Ops as a Service”.

• OS Ops. Someone has to make sure the machines boot and that there is a

good kernel. Breaking this out from application dependency management

mirrors the trend of minimal OS distributions focused on hosting containers

(CoreOS, Red Hat Project Atomic, Ubuntu Snappy, Rancher OS, VMWare

Photon, Google Container Optimized OS).

• Cluster Ops. In a containerized world, a compute cluster becomes a logical

infrastructure platform. The cluster system (Kubernetes) provides a set of

primitives that enable many of the traditional operations tasks to be self

service.

6

How to Think Cloud Native

• App Ops. Each application now can have a dedicated apps team as appropriate.

As above, the dev team can and should play this role as necessary. This ops

team is expected to go deeper on the application as they don’t have to be

experts in the other layers. For example, at Google, the AdWords Frontend SRE

team will talk to the AdWords Frontend development team a lot more than

they’ll talk to the cluster SRE (borg-sre) team. This alignment of incentives can

lead to better outcomes.

There is probably room for other specialized SRE teams depending on the needs of the

organization. For instance, storage services may be broken out as a separate service

with dedicated SREs. Or there may be a team responsible for building and validating

the base container image that all teams should use as a matter of policy.

04. Containers and Clusters
There is quite a bit of excitement around containers. It is helpful to try to get to the root

of why containers are exciting to so many folks. In my mind, there are three different

reasons for this excitement:

1. Packaging and portability

2. Efficiency

3. Security

Let’s look at each of these in turn.

First, containers provide a packaging mechanism. This allows the building of a system

to be separated from the deployment of those systems. In addition, the

artifacts/images that are built are much more portable across environments (dev, test,

staging, prod) than more traditional approaches such as VM images. Finally,

deployments become more atomic. Traditional configuration management systems

(puppet, chef, salt, ansible) can easily leave systems in a half configured state that is

hard to debug. It is also easy to have unintended version skew across machines without

realizing it.

7

How to Think Cloud Native

Second, containers can be lighter weight than full systems leading to increased

resource utilization. This was the main driver when Google introduced cgroupsͺ—ͺone

of the core kernel technologies underlying containers. By sharing a kernel and allowing

for much more fluid overcommit, containers can make it easier to “use every part of the

cow.” Over time, expect to see much more sophisticated ways to balance the needs of

containers cohabitating a single host without noisy neighbor issues.

Finally, many users view containers as a security boundary. While containers can be

more secure than simple unix processes, care should be taken before viewing them as

a hard security boundary. The security assurances provided by Linux namespaces may

be appropriate for “soft” multi-tenancy where the workloads are semi-trusted but not

appropriate for “hard” multi-tenancy where workloads are actively antagonistic.

There is ongoing work in multiple quarters to blur the lines between containers and

VMs. Early research into systems like unikernels is interesting but won’t be ready for

wide production for years yet.

While containers provide an easy way to achieve the goals above, they aren’t

absolutely necessary. Netflix, for instance, has traditionally run a very modern stack

(and is the AWS poster child) by packaging and using VM images similar to how others

use containers.

8

How to Think Cloud Native

¡ ¡
ǶEmvtufst ifmq fmjnjobuf pqt esvehfsz0Ƿ

While most of the original push around containers centered around managing the

software on a single node in a more reliable and predictable way, the next step of this

evolution is around clusters (also often known as orchestrators). Taking a number of

nodes and binding them together with automated systems creates a new self service

set of logical infrastructure for development and operations teams.

With a container cluster we make computers take over the job of figuring out what

workload should go on which machine. Clusters also silently fix things up when

hardware fails in the middle of the night instead of paging someone.

The first thing that clusters do is enable the operations specialization (as described

above) that allows application ops to thrive as a separate discipline. By having a well

defined cluster interface, application teams can concentrate on solving the problems

that are immediate to the application itself.

The second benefit of clusters is that it makes it possible to launch and manage more

services. This allows new architectures (via microservices described in the next

installment of this series) that can unlock velocity for development teams.

05. Microservices
Microservices are a new name for a concept that has been around for a very long time.

Basically, it is a way to break up a large application into smaller pieces so that they can

be developed and managed independently. Let’s look at some of the key aspects here:

• Strong and clear interfaces. Tight coupling between services must be avoided.

Documented and versioned interfaces help to solidify that contract and retain a

9

How to Think Cloud Native

certain degree of freedom for both the consumers and producers of these

services.

• Independently deployed and managed. It should be possible for a single

microservice to be updated without synchronizing with all of the other services.

It is also desirable to be able to roll back a version of a microservice easily. This

means the binaries that are deployed must be forward and backward

compatible both in terms of API and any data schemas. This can test the

cooperation and communication mechanisms between the appropriate ops

and dev teams.

• Resilience built in. Microservices should be built and tested to be

independently resilient. Code that consumes a service should strive to continue

working and do something reasonable in the event that the consumed service

is down or misbehaving. Similarly, any service that is offered should have some

defenses with respect to unanticipated load and bad input.

Sizing of microservices can be a tricky thing to get right. I’d say to avoid services that

are too small (pico-services) and instead aim to split services across natural boundaries

(languages, async queues, scaling requirements) and to keep team sizes reasonable

(i.e. 2 pizza teams).

Instead of starting with 20 services start with 2–3 and split services as complexity in that

area grows. Oftentimes the architecture of an application isn’t well understood until the

application is well under development. This also acknowledges that applications are

rarely “finished” but rather always a work in progress.

Are microservices a new concept? Not really. This is really another type of software

componentization. We’ve always split code up into libraries. This is just moving the

“linker” from being a build time concept to a run time concept. This is also very similar

to the SOA push from several years ago but without all of the XML. Viewed from

another angle, the database has almost always been a “microservice” in that it is often

implemented and deployed in a way that satisfies the points above.

10

How to Think Cloud Native

Constraints can lead to productivity. While it is tempting to allow each team to pick a

different language or framework for each microservice, consider instead standardizing

on a few languages and frameworks. Doing so will improve knowledge transfer and

mobility within the organization. However, be open to making exceptions to policy as

necessary. This is a key advantage of this world over a more vertically integrated and

structured PaaS. In other words, constraints should be a matter of policy rather than

capability.

ǶUif bqqmjdbujpo bsdijufduvsf tipvme¡
cf bmmpxfe up hspx jo b qsbdujdbm boe¡
pshbojd xbz0Ƿ

While most view microservices as an implementation technique for a large application,

there are other types of services that form the services spectrum:

1. Service as implementation detail. As described above, this is useful for

breaking down a large application team into smaller teams that stretch from

development to operations.

2. Shared artifact, private instance. In this scenario, the development process is

shared across many instances of the service. There may be one dev team and

many ops teams or perhaps a unified ops team that works across dedicated

instances. Many databases fall into this category where many teams are

running private instances of a single MySQL binary.

3. Shared instance. Here a single team provides a shared service to many

applications and teams inside of an organization. The service may partition data

and actions per user (multi-tenant) or provide a single simple service that is use

11

How to Think Cloud Native

very widely (serving HTML UI for a common branding bar, serving up machine

learning models, etc).

4. Big-S Service. Most enterprises won’t produce a service like this but may

consume them. This is the typical “hard” multi-tenant service that is built to

service a large number of very disparate customers. This type of service

requires a level of accounting and hardening that isn’t often necessary inside of

an enterprise. Something like SendGrid or Twilio would fall into this category.

As services shift from being an implementation detail to a common infrastructure

offered up within an enterprise the service network morphs from being a

per-application concept to something that can span the entire company. There is an

opportunity and a danger in allowing these types of dependencies.

06. Security
Security is still a big question in the cloud native world. Old techniques don’t apply

cleanly and so, initially, cloud native may appear to be a step backward. But this brave

new world also introduces opportunities.

Container Image Security

There are quite a few tools that help users to audit their container images to ensure

that they are fully patched. I don’t have a strong opinion on the various options there.

The real problem: what do you do once you find a vulnerable container image? This

is a place where the market hasn’t provided a great set of solutions. You will want to

identify which groups within your organization are impacted, where in your container

image “tree” to fix the problem and how best to test and push out a new patched

version.

CI/CD (Continuous Integration/Continuous Deployment) is a critical piece of the puzzle

as it will enable automated and quick release processes for the new images.

Furthermore, integration with orchestration systems will enable you to identify which

12

How to Think Cloud Native

users are using which vulnerable images. It will also allow you to verify that a new fixed

version is actually being run in production. Finally, policy in your deployment system

can help prevent new containers from being launched with a known bad image (in the

Kubernetes world this policy is called admission).

ǶQodf b wvmofsbcmf jnbhf jt gpvoe uijt¡
dibohft uijoht gspn cfjoh b ufdiojdbm¡
jttvf up b qspdftt1xpslgmpx jttvf0Ƿ

Microservice and Network Security

But even if all of the things you are running on your cluster are patched, it doesn’t

ensure that there all activity on your network is trusted.

Traditional network based security tools don’t work well in a dynamically scheduled

short lived container world. Short lived containers may not be around long enough to

be scanned by traditional scanning tools. And by the time a report is generated, the

container in question may be gone.

With dynamic orchestrators, IPs don’t have long term meaning and can be reused

automatically. The solution is to integrate network analysis tools with the orchestrator

so that logical names (and other metadata) can be used in addition to raw IP addresses.

This will likely make alerts more easily actionable.

Many of the networking technologies leverage encapsulation to implement an “IP per

container”. This can create issues for network tracing and inspection tools. They will have

to be adapted if such networking systems are deployed in production. Luckily, much of

this has standardized on VXLAN, VLANs or no encapsulation/virtualization so support can

be leveraged across many such systems.

13

How to Think Cloud Native

However, in my opinion, the biggest issues are around microservices.

When there are many services running in production, it is necessary to ensure that only

authorized clients are calling any particular service. Furthermore, with reuse of IPs,

clients need to know that they are speaking with the correct service. As of now, this is

largely an unsolved problem. There are two (non-mutually exclusive) ways to approach

this problem.

First, the more flexible networking systems and the opportunity to implement host

level firewall rules (outside any container) to enable fine grained access policies for

which containers can call which other containers. I’ve been calling this approach

network micro-segmentation. The challenge here is one of configuring such policy in

the face of dynamic scheduling. While early yet, there are multiple companies working

to make this easier through support in the network, coordination with the orchestrator

and higher level application definitions. One big caveat: micro-segmentation becomes

less effective the more widely any specific service is used. If a service has 100s of

callers, simple “access implies authorization” models are no longer effective.

The second approach is for applications to play a larger role in implementing

authentication and encryption inside the datacenter. This works as services take on

many clients and become “soft multi-tenant” inside a large organization. This requires a

system of identity for production services. As a side project, I’ve started a project

called SPIFFE (Secure Production Identity Framework For Everyone). These ideas are

14

How to Think Cloud Native

proven inside of companies such as Google but haven’t been widely deployed

elsewhere.

Security is a deep topic and I’m sure that there are threats and considerations not listed

here. This will have to be an ongoing discussion.

There’s a start on how to think cloud native. If you’re keen to continue the

discussion, then please reach out to us via:

Heptio.com | @heptio | @jbeda

15

